Cambridge International AS & A Level

MATHEMATICS Paper 5 Probability & Statistics 1 MARK SCHEME

Maximum Mark: 50

9709/05 For examination from 2020

Specimen

© UCLES 2017

This document has 8 pages. Blank pages are indicated.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question .
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors •
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

0

UCLES

For examination

from 2020

© UCLES 2017

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types.

- M Method mark, given for a valid method applied to the problem. Method marks can still be given even if there are numerical errors, algebraic slips or errors in units. However the method must be applied to the specific problem, e.g. by substituting the relevant quantities into a formula. Correct use of a formula without the formula being quoted earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, given for an accurate answer or accurate intermediate step following a correct method. Accuracy marks cannot be given unless the relevant method mark has also been given.
- B Mark for a correct statement or step.
- DM or DB M marks and B marks are generally independent of each other. The notation DM or DB means a particular M or B mark is dependent on an earlier M or B mark (indicated by *). When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

Page 3

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT below).
- $\frac{9}{2}$ Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures (sf) or would be correct to 3 sf if rounded (1 decimal point (dp) for angles in degrees). As stated above, an A or B mark is not given if a correct numerical answer is obtained from incorrect working.
- Common alternative solutions are shown in the Answer column as: **'EITHER** Solution 1 **OR** Solution 2 **OR** Solution 3 ...'. Round brackets appear in the Partial Marks column around the marks for each alternative solution.
- Square brackets [] around text show extra information not needed for the mark to be awarded.
- The total number of marks available for each question is shown at the bottom of the Marks column in bold type.

The following abbreviations may be used in a mark scheme.

- AG Answer given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid).
- CAO Correct answer only (emphasising that no 'follow through' from an error is allowed).
- CWO Correct working only
- FT Follow through after error (see Mark Scheme Notes for further details).
- ISW Ignore subsequent working
- OE Or equivalent form
- SC Special case
- SOI Seen or implied

© UCLES	Question	Answer	Marks	Partial Marks	Guidance
3 2017	1(a)	females: median \$22700	1	B1	
		Lower quartile \$21 700 Upper quartile \$24 000	1	B1	Both correct
			2		
	1(b)	Uniform scale and labels	1	B1	Must see Salary, \$000
Page		males females 20 21 22 23 24 25 26 27 salary in \$000	2	B1B1FT	B1 for correct graph for males CAO B1 for correct graph for females FT their quartiles. Horizontal line not through box
; 4 of 8		satary in \$000			
æ			3		

Question	Answer	Marks	Partial Marks	Guidance
2	Coded mean = $\frac{81.4}{22}$ = 3.7	1	M1	Attempt to find variance using coding in both, correct use of formula
	$Var = \frac{671}{22} - 3.7^2$			
	Var = 16.81	1	A1	Accept 16.8
	$16.81 = \frac{\Sigma x^2}{22} - 53.7^2$	1	M1	using their variance and their mean with uncoded formula for both
	$\Sigma x^2 = 63811$	1	A1	Accept 63 800
	Available marks	4		

© UCLES	Question	Answer	Marks	Partial Marks	Guidance
5 2017	3(a)	EITHER Solution 1	1	(M1	⁶ C _x
		$P (exactly 2) = \frac{{}^{6}C_{2}}{{}^{8}C_{4}}$			$\frac{8}{8}C_{y}$ seen
		$=\frac{15}{70}=\frac{3}{14}$	1	A1)	AG CWO
		OR Solution 2	1	(M1	⁴ C ₂ multiplied by 4 fractions
		$P(2) = \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_{2}$			
		$=\frac{3}{14}$	1	A1)	AG CWO
		Available marks	2		
	3(b)		1	B1	2, 3, 4 only in top line
P		Prob 3 8 3	1	B1	one correct probability other than P(2)
age 5			1	B1FT	third correct probability FT $\Sigma = 1$
of 8			3		
	3(c)	$\operatorname{Var}(X) = \frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$	1	M1	using $\Sigma x^2 p - 3^2$
		$=\frac{3}{7}=0.429$	1	A1	
			2		

				Partial	
Question	Answer	Marl	KS	Marks	Guidance
4(a)	$P(X > 3900) = P\left(Z > \frac{3900 - 4520}{560}\right)$	1	I	M1	Standardising: no continuity correction, no square root, no square
	$P(Z > -1.107) = \Phi(1.107)$	1	1	M1	Attempt at correct area: $\Phi > 0.5$, depends on negative <i>z</i>
	= 0.8657	1	1	A1	Probability rounding to 0.866
	Number of days = $365 \times 0.8657 = 315$ or $316 (315.98)$	1]	B1FT	FT their wrong probability if previous A0, $p < 1$, FT must be accurate to 3sf
			4		
4(b)	z = 1.165	1]	B1	± 1.165 seen
	$1.165 = \frac{8000 - m}{560}$	1	1	M1	Standardising equation, allow square, square root, continuity correction, must have <i>z</i> -value (e.g. not 0.122, 0.878, 0.549, 0.810).
	m = 7350 (7347.6)	1	1	A1	
			3		
4(c)	$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ (= 0.4581 + 0.3819)	2	1	M1M1	M1 for Correct unsimplified expression M1 for Binomial term ${}^{6}C_{x} p^{x} (1-p)^{6-x}$ $0seen$
	= 0.840 (accept 0.84)	1	1	A1	
			3		
	Question 4(a) 4(b) 4(c)	QuestionAnswer4(a) $P(X > 3900) = P(Z > \frac{3900 - 4520}{560})$ $P(Z > -1.107) = \Phi(1.107)$ $= 0.8657$ Number of days = $365 \times 0.8657 = 315$ or 316 (315.98)4(b) $z = 1.165$ $1.165 = \frac{8000 - m}{560}$ $m = 7350$ (7347.6) $m = 7350$ (7347.6) $= 0.840$ (accept 0.84)	QuestionAnswerMark $4(a)$ $P(X > 3900) = P\left(Z > \frac{3900 - 4520}{560}\right)$ 1 $P(Z > -1.107) = \Phi(1.107)$ 1 $P(Z > -1.107) = \Phi(1.107)$ 1 $= 0.8657$ 1Number of days = $365 \times 0.8657 = 315$ or 316 (315.98)14(b) $z = 1.165$ 1 $1.165 = \frac{8000 - m}{560}$ 1 $m = 7350$ (7347.6)1 $m = 7350$ (7347.6)1 $4(c)$ $P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ ($= 0.4581 + 0.3819$)2 $= 0.840$ (accept 0.84)1	QuestionAnswerMarks $4(a)$ $P(X > 3900) = P(Z > \frac{3900 - 4520}{560})$ 1 $P(Z > -1.107) = \Phi(1.107)$ 1 $P(Z > -1.107) = \Phi(1.107)$ 1 $= 0.8657$ 1Number of days = $365 \times 0.8657 = 315$ or 316 (315.98)1 4 1 4 1 4 1 $1.165 = \frac{8000 - m}{560}$ 1 $m = 7350$ (7347.6)1 $m = 7350$ (7347.6)1 4 3 4 $9(0, 1) = (0.878)^6 + ^6C_1(0.122)^1(0.878)^5$ 4 2 $10.165 = \frac{10.000 - m}{560}$ <tr< th=""><th>QuestionMarksPartial Marks$4(a)$$P(X > 3900) = P(Z > \frac{3900 - 4520}{560})$1M1$P(Z > -1.107) = \Phi(1.107)$1M1$P(Z > -1.107) = \Phi(1.107)$1A1$= 0.8657$1A1Number of days = $365 \times 0.8657 = 315$ or 316 (315.98)1B1FT$4(b)$$z = 1.165$1B1$1.165 = \frac{8000 - m}{560}$1B1$1.165 = \frac{8000 - m}{560}$1A1$m = 7350$ (7347.6)1A1$m = 7350$ (7347.6)2M1M1$4(c)$$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.4581 + 0.3819)$2M1M1$4(c)$$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.840$ (accept 0.84)1A1$4(c)$$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.840$ (accept 0.84)1A1</th></tr<>	QuestionMarksPartial Marks $4(a)$ $P(X > 3900) = P(Z > \frac{3900 - 4520}{560})$ 1M1 $P(Z > -1.107) = \Phi(1.107)$ 1M1 $P(Z > -1.107) = \Phi(1.107)$ 1A1 $= 0.8657$ 1A1Number of days = $365 \times 0.8657 = 315$ or 316 (315.98)1B1FT $4(b)$ $z = 1.165$ 1B1 $1.165 = \frac{8000 - m}{560}$ 1B1 $1.165 = \frac{8000 - m}{560}$ 1A1 $m = 7350$ (7347.6)1A1 $m = 7350$ (7347.6)2M1M1 $4(c)$ $P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.4581 + 0.3819)$ 2M1M1 $4(c)$ $P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.840$ (accept 0.84)1A1 $4(c)$ $P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ $(= 0.840$ (accept 0.84)1A1

https://xtremepape.rs/

Cambridge International AS & A Level – Mark Scheme SPECIMEN

© UCLES	Questio
2017	5(a)
	© UCLES 2017

UCLES	Question	Answer	Marks	Partial Marks	Guidance
\$ 2017	5(a)	$p = \frac{1}{6}$: mean = $np = 90 \times \frac{1}{6} = 15$	1	B1	Correct mean
		Variance = $npq = \frac{75}{6}$	1	B1	Correct variance
		$P(X < 18) = P\left(Z < \frac{17.5 - 15}{\sqrt{\frac{75}{6}}}\right) = P(Z < 0.7071)$	1	M1	Standardising equation, allow square, square root, continuity correction
		= 0.760	1	A1	
			4		
	5(b)	np = 15 > 5 and $nq = 75 > 5$, so normal justified	1	B1	Both parts needed
	5(c)	$1 - \left(\frac{5}{6}\right)^6$	1	M1	
Pag		= 0.665	1	A1	
e 7 of			2		
×					
				Partial	

Ð
-
Э,
×

~							
	Question	Answer	Marks	Partial Marks	Guidance		
	6(a)	[Two in same taxi:]	1	M1	${}^{6}C_{4}$ or ${}^{6}C_{2}$ OE seen anywhere		
		$^{\circ}C_2 \times {}^{4}C_4 \times 2$ or $^{\circ}C_2 + {}^{\circ}C_4$	1	M1	'something' × 2 only or adding 2 equal terms		
		= 30	1	A1			
			3				
	6(b)	[Mark, Jon and Sarah in taxi P:] $({}^{5}C_{1} \times 2 \times 2) \times {}^{4}P_{4}$	1	M1	${}^{5}P_{1}, {}^{5}C_{1}$ or 5 seen anywhere		
			1	M1	Multiply by 2 or 4 OE		
			1	M1	Multiply by ${}^{4}P_{4}$ OE, e.g. 4! or $4 \times {}^{3}P_{3}$ or can be part of 5!		
		= 480	1	A1			
			4				

© UCLES	Question	Answer	Marks	Partial Marks	Guidance
\$ 2017	7(a)	$P(X) = P(exactly 2 balls have same number)$ $P(2, N2, 2) = \frac{1}{4} \times 1 \times \frac{1}{7} = \frac{1}{28}$	1	M1	Considering at least two options of 2s and 8s
		$P(8, 8, N8) = \frac{1}{4} \times \frac{2}{5} \times \frac{3}{7} = \frac{3}{70}$	1	M1	Considering three options for the 8s
		P(8, N8, 8) = $\frac{1}{4} \times \frac{3}{5} \times \frac{4}{7} = \frac{3}{35}$	1	M1	Summing their options if more than 3 in total
		$P(N8, 8, 8) = \frac{3}{4} \times \frac{2}{5} \times \frac{4}{7} = \frac{6}{35}$	1	B1	One option correct
		$P(X) = \text{sum} = \frac{47}{140} \ (0.336)$	1	A1	
			5		
	7(b)	P(X ∩ Y) = P(4, 8, 8) = $\frac{1}{4} \times \frac{2}{5} \times \frac{4}{7} = \frac{2}{35}$	1	B1	
Page 8		$P(Y) = \frac{1}{4} \\ \frac{2}{35} \neq \frac{47}{140} \times \frac{1}{4}$	1	M1	Attempt to compare $P(X \cap Y)$ with $P(X) \times P(Y)$ or using conditional probabilities
3 of 8		Not independent	1	A1	Correct answer, correct working only
			3		
	7(c)	P(2, 2 given same) = $\frac{1}{28} \div \frac{47}{140}$	1	M1	$\frac{1}{28}$ in numerator of a fraction
		$=\frac{5}{47}(0.106)$	1	A1	
			2		

Cambridge International AS & A Level – Mark Scheme SPECIMEN

9709/05